Extensive dissolution of live pteropods in the Southern Ocean

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

When scientists collected pteropods living in the Southern Ocean, where high levels of CO2 caused low availability of calcium carbonate in the water for building shells, they found that the pteropods' shells had severely dissolved. In the laboratory, pteropods incubated under similar CO2 conditions had equivalent levels of dissolution. ...

Effects of CO2- induced seawater acidification on the health of Mytilus edulis.

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

Blue mussels exposed to highly acidified seawater for sixty days were able to protect their body tissues involved in reproduction, digestion, and respiration. However, the physiological defenses take energy away from other life processes, meaning that long-term exposure to ocean acidification may result in reduced growth and health of blue ...

Calcification of the Arctic coralline red algae Lithothamnion glaciale in response to elevated CO2

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

The calcium carbonate skeleton of a coralline red alga was estimated to become highly vulnerable to dissolving at an aragonite saturation state between 1.1 and 0.9, which is projected to occur in some parts of the Arctic between 2030 and 2050 if carbon emissions follow "business as usual" scenarios. (Laboratory ...

Effects of CO2-induced ocean acidification on physiological and mechanical properties of the starfish Asterias rubens

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

The common sea star (Asterias rubens) appeared to withstand the effects of reduced seawater pH, at least for short-term exposures of 15 to 27 days, with no significant changes in the strength of its tube feet or the RNA/DNA ratio of its tissues. (Laboratory study)

The direct effects of increasing CO2 and temperature on non-calcifying organisms: Increasing the potential for phase shifts in kelp forests

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

Increased CO2 and temperature acted together to increase the growth of algal turfs, which produced twice as much biomass and covered four times as much space. Experimental removal of algal turfs led to greater establishment of young kelp. The findings suggest that ocean acidification and warming could potentially cause a ...

Environmental salinity modulates the effects of elevated CO2 levels on juvenile hardshell clams, Mercenaria mercenaria

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

For juvenile hard-shell clams, ocean acidification alone or in combination with low salinity reduced the hardness and fracture toughness of their shells. This may reduce protection against predators. Salinity should be taken into account when predicting the effects of ocean acidification on estuarine bivalves. (Laboratory study)

Interactive effects of salinity and elevated CO2 levels on juvenile eastern oysters, Crassostrea virginica.

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

When juvenile oysters were exposed to ocean acidification and/or low salinity, they had greater mortality, less energy stored in their tissues, and loss of soft tissue indicating energy deficiency. Ocean acidification and low salinity also reduced the hardness and fracture resistance of their shells. (Laboratory study)

Pages