Effects of pCO2 on physiology and skeletal mineralogy in a tidal pool coralline alga Corallina elongata

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

A coralline red alga that lives in tide pools, where it is common for CO2 levels to fluctuate tremendously daily and seasonally, was relatively robust to ocean acidification conditions, compared to other types of coralline algae. (Laboratory study)

The effect of CO2 acidified sea water and reduced salinity on aspects of the embryonic development of the amphipod Echinogammarus marinus (Leach)

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

While ocean acidification may have some negative effects on the eggs of amphipods, exposure to low-salinity water is likely to affect the eggs more, based on ocean acidification trends projected for the next 300 years. (Laboratory study)

Contrasting resource limitations of marine primary producers: Implications for competitive interactions under enriched CO2 and nutrient regimes

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

Ocean acidification may favor growth of algal turfs rather than kelp forests. Such a change would affect the many species associated with algal turf or kelp forest habitats.

Ocean acidification induces multi-generational decline in copepod naupliar production with possible conflict for reproductive resource allocation.

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

A species of copepod (Tisbe battagliai) had decreased reproduction and growth when exposed to ocean acidification conditions. Over time, these changes could result in smaller brood sizes, smaller females, and perhaps later maturing females, which could destabilize the food web. (Laboratory study)

Effect of ocean acidification on early life stages of Atlantic herring (Clupea harengus L.)

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

When Atlantic herring eggs were fertilized, incubated, and hatched in ocean acidification conditions, there was no effect on embryo development or hatch rate. There was also no clear relationship between ocean acidification and length, weight, yolk sac area, or otolith area of the newly hatched larvae. However, the larvae did ...

Effects of CO2 enrichment on photosynthesis, growth, and nitrogen metabolism of the seagrass Zostera noltii

  • Posted on: Wed, 03/30/2016 - 16:06
  • By: petert

Seagrass ecosystems are expected to benefit from the global increase in CO 2 in the ocean because the photosynthetic rate of these plants may be Ci-limited at the current CO 2 level. As well, it is expected that lower external pH will facilitate the nitrate uptake of seagrasses if nitrate is cotransported with H+ across ...

Deformities in larvae and juvenile European lobster (Homarus gammarus) exposed to lower pH at two different temperatures

  • Posted on: Wed, 03/30/2016 - 16:03
  • By: petert

The ongoing warming and acidification of the world's oceans are expected to influence the marine ecosystems, including benthic marine resources. Ocean acidification may especially have an impact on calcifying organisms, and the European lobster (Homarus gammarus) is among those species at risk. A project was initiated in 2011 aiming to ...

Ultraviolet radiation modulates the physiological responses of the calcified rhodophyte Corallina officinalis to elevated CO2

  • Posted on: Wed, 03/30/2016 - 15:58
  • By: petert

Ocean acidification reduces the concentration of carbonate ions and increases those of bicarbonate ions in seawater compared with the present oceanic conditions. This altered composition of inorganic carbon species may, by interacting with ultraviolet radiation (UVR), affect the physiology of macroalgal species. However, very little is known about how calcareous ...

Coastal ocean acidification: The other eutrophication problem

  • Posted on: Wed, 03/30/2016 - 15:56
  • By: petert

Increased nutrient loading into estuaries causes the accumulation of algal biomass, and microbial degradation of this organic matter decreases oxygen levels and contributes towards hypoxia. A second, often overlooked consequence of microbial degradation of organic matter is the production of carbon dioxide (CO2) and a lowering of seawater pH. To ...

Pages