Reference Library: All References

The growing human footprint on coastal and open-ocean biogeochemistry

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

Climate change, rising atmospheric carbon dioxide, excess nutrient inputs, and pollution in its many forms are fundamentally altering the chemistry of the ocean, often on a global scale and, in some cases, at rates greatly exceeding those in the historical and recent geological record. Major observed trends include a shift ...

Impact of exposure to elevated pCO2 on the physiology and behaviour of an important ecosystem engineer, the burrowing shrimp Upogebia deltaura

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

A species of burrowing shrimp was able to tolerate ocean acidification conditions (pH 7.64) for 35 days. At a lower pH of 7.35, individuals experienced extracellular acidosis, suggesting they had little or no buffering capacity, although there was no evidence of negative impacts on metabolism, osmotic regulation, shell mineralogy, growth, ...

Effects of seawater temperature and pH on the boring rates of the sponge Cliona celata in scallop shells

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

Ocean acidification increased the rate at which sponges bored into scallop shells. At pH 7.8, sponges bored twice the number of papillar holes and removed two times more shell weight than at pH 8.1. Greater erosion caused by the lower pH weakened the scallop shells. A warmer water temperature had ...

Near future ocean acidification increases growth rate of the lecithotrophic larvae and juveniles of the sea star Crossaster papposus

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

Common sunstar larvae and juveniles in ocean acidification conditions grew faster without apparent effects on survival or body structure. Unlike the larvae of some other sea star species that feed on plankton, larval common sunstars rely on nutrition provided in their egg. This difference in life history may enable some ...

Effects of CO2 enrichment on photosynthesis, growth, and nitrogen metabolism of the seagrass Zostera noltii

  • Posted on: Wed, 03/30/2016 - 16:06
  • By: petert

Seagrass ecosystems are expected to benefit from the global increase in CO 2 in the ocean because the photosynthetic rate of these plants may be Ci-limited at the current CO 2 level. As well, it is expected that lower external pH will facilitate the nitrate uptake of seagrasses if nitrate is cotransported with H+ across ...

Deformities in larvae and juvenile European lobster (Homarus gammarus) exposed to lower pH at two different temperatures

  • Posted on: Wed, 03/30/2016 - 16:03
  • By: petert

The ongoing warming and acidification of the world's oceans are expected to influence the marine ecosystems, including benthic marine resources. Ocean acidification may especially have an impact on calcifying organisms, and the European lobster (Homarus gammarus) is among those species at risk. A project was initiated in 2011 aiming to ...

History of Seawater Carbonate Chemistry, Atmospheric CO2, and Ocean Acidification

  • Posted on: Wed, 03/30/2016 - 16:00
  • By: petert

Humans are continuing to add vast amounts of carbon dioxide (CO2) to the atmosphere through fossil fuel burning and other activities. A large fraction of the CO2 is taken up by the oceans in a process that lowers ocean pH and carbonate mineral saturation state. This effect has potentially serious consequences ...

Ultraviolet radiation modulates the physiological responses of the calcified rhodophyte Corallina officinalis to elevated CO2

  • Posted on: Wed, 03/30/2016 - 15:58
  • By: petert

Ocean acidification reduces the concentration of carbonate ions and increases those of bicarbonate ions in seawater compared with the present oceanic conditions. This altered composition of inorganic carbon species may, by interacting with ultraviolet radiation (UVR), affect the physiology of macroalgal species. However, very little is known about how calcareous ...

Pages