Reference Library: All References

Response of eelgrass Zostera marina to CO2 enrichment: Possible impacts of climate change and potential for remediation of coastal habitats

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

When eelgrass was grown for a year under ocean acidification conditions in outdoor aquaria, they had greater reproductive output, below-ground biomass, and proliferation of new shoots. The findings suggest that ocean acidification will increase the productivity of seagrass meadows. (Laboratory study)

Tolerance of juvenile barnacles (Amphibalanus improvisus) to warming and elevated pCO2

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

The Kiel Fjord (Baltic Sea) has large natural variations in carbon dioxide levels. When barnacles from the fjord were raised for 8-12 weeks in warmer seawater under ocean acidification conditions, their growth and condition did not change significantly. Warming increased the shell strength, but ocean acidification conditions had only weak ...

Extracellular acid–base regulation during short-term hypercapnia is effective in a shallow-water crab, but ineffective in a deep-sea crab

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

Experiments with deep-sea and shallow-water crab species from the U.S. west coast indicated that deep-sea animals, which are adapted to a stable environment and have reduced metabolic rates, lack the short-term acid–base regulatory capacity to cope with the sudden, large increases in carbon dioxide that would occur if carbon dioxide ...

Multigenerational exposure to ocean acidification during food limitation reveals consequences for copepod scope for growth and vital rates

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

The copepod Calanus finmarchicus had reduced growth, development, and fecundity when exposed to ocean acidification conditions. However, offspring in the next generation did not have delayed development, suggesting that the species may have an ability to adapt to ocean acidification. The results also suggest that in a more acidified ocean ...

Ocean warming, more than acidification, reduces shell strength in a commercial shellfish species during food limitation

  • Posted on: Mon, 06/13/2016 - 05:56
  • By: Anonymous

After six months exposure, warmer temperatures, but not ocean acidification, significantly reduced the shell strength of blue mussels, which were fed for a limited period of only 4-6 hours per day. The rising temperatures seemed to affect shell strength indirectly, as the mussels apparently re-allocated energy from shell formation to ...

Pages